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Using a Kubo formula and the Suzuki identities, expressions are derived for the 
initial perpendicular susceptibilities )~• of the transverse spin-S Ising and spin-S 
Blume-Capel models on regular and irregular lattices. Z• is given in terms of 
the thermal average of a function of the peripheral sum Oi=Y~jJ~/Sj, where 
coupling to distant neighbors may be included, as well as arbitrary local parallel 
magnetic fields hi. For the Ising model on a Bravais lattice, e.g., the suscep- 
tibility is given by 

Z• = Nm2S-2(Bs( f l [O,  + hi] )/[Oi + hi] 

where B s is the Brillouin function. For S=  �89 the formula of Fisher and the 
results of Horiguchi and Morita are regained. A connection is made with the 
general-spin work of Essam and Garelick. 

KEY WORDS: Perpendicular susceptibility; isothermal susceptibility; Ising 
model; Blume-Capel model. 

1. I N T R O D U C T I O N  

A f o r m u l a  for the p e r p e n d i c u l a r  suscept ib i l i ty  of the t r ansverse  spin-�89 Is ing  
model ,  in  te rms  of  m u l t i s p i n  co r r e l a t i on  func t ions ,  was first g iven by  

Fisher ,  (~) us ing  a c o m b i n a t i o n  of g r aph - theo re t i c  cons ide ra t i ons  a n d  
s t r a igh t fo rward  m a t r i x  analysis .  I t  was app l ied  by  h im to the quadra t i c ,  
h o n e y c o m b  a n d  Bethe latt ices,  a n d  by  S t e p h e n s o n  (2) to the  t r i a n g u l a r  lat-  

tice. As der ived,  the f o r m u l a  held  on ly  for regular  lattices. I t  was ex tended ,  
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using the Kubo (3~ formalism, to cover irregular lattices by Horiguchi and 
Morita, (4) with application by Barry (5) to the Kagom6 and the decorated 
Kagom6 lattices. For the three-dimensional lattices, where the relevant 
multispin correlations are not known analytically, this formula has not 
been used. Rather, Z• has been studied by analysis of high- and low-tem- 
perature series expansion methods (6'7) and by correlated effective field 
methods. (8) 

Recently, closed-form theories have been developed (9 14) that give the 
required multispin correlation functions at the critical point (and also, in 
principle, away from To) to a relatively high degree of accuracy (9) (namely, 
within 1 or 2% of available series and Monte Carlo calculation results) 
and with relatively little cost in computation time, when the following Ising 
systems are considered: (i) those for spin �89 and spin 1, (1~ (ii) for spin 
S >  1, (11/ (iii) pair interactions, with further neighbor bonds,/12) (iv) on lat- 
tices of d~> 3 spatial dimensions, (13) and (v) with quartet as well as pair 
interactions. (~4) It is of interest, therefore, to develop formulas that will be 
of use in calculating Z• for all these systems, as well as for more general 
systems that are in principle capable of treatment by similar closed-form 
methods. 

In the following, starting from the well-known Kubo formula ~3) and 
using a Suzuki identity, (15) the perpendicular susceptibility formula is 
derived in a simple way for the simplest spin-S transverse Ising system. 
This is done in order to illustrate the basic elements of our approach. 
Several immediate generalizations to other, more complicated, Ising models 
are then indicated. To display its versatility, the approach is used finally to 
consider the transverse Blume-Capel (~6'1v) model generalized to spin S. 

2. T H E O R Y ;  I S I N G  M O D E L  

2.1. Bravais Lattice 

We start with the simple spin-S transverse Ising model Hamiltonian 

HT=H-mS IHx~ S ~ 
J 

H= - !  y 
2j, k 

(2.1) 

where Jjk is J or 0, depending on whether or not j and k are nearest 
neighbors, j and k label the N lattice sites of a Bravais lattice, and H x is the 
external magnetic field, taken to be in the x direction. Each Sj may take on 
the values - S ,  - S  + 1 ..... + S. In terms of this Hamiltonian, the initial 



Perpendicular Isothermal Susceptibility 561 

(i.e., as Hx ~ 0) perpendicular susceptibility is given by Kubo  (3) (see also 
Betts (18) for a particularly clear derivation) as 

= f ~ <exp(2H) M• e x p ( -  2 H ) M •  } d2 (2.2) 
00 

where/3 = 1/kB T, 

M• = mS 1S x = mS -1 Z S~ (2.3) 
J 

and the thermal average is given by 

( . - .>  = Z -1 Tr[exp(  - f i l l ) . . . ]  (2.4) 

with 
Z = Tr [ e x p ( - f i l l ) ]  (2.5) 

A term - f l < M •  2 originally in (2.2) has been omitted; for H axial it 
vanishes. As all sites are equivalent on a Bravais lattice, the integrand I of 
(2.2) becomes 

I = C'N<exp(2H)S~ exp( - 2 H ) S  x > (2.6) 

where i is any chosen lattice site and C' -- m2S -2. Further, as H is invariant 
to rotation about  the z axis in the subspace of any spin i, the only surviving 
term of (2.6) when the sum (2.3) of S ~ is inserted is 

I = C'N<exp(2H) S~ exp( - 2H) S x } (2.7) 

Using the ladder operators S + = Sr +_ iSf, so that S 7 = (S + + Ss one 
has 

I=  C N ( e x p ( 2 H ) S  + exp( " 2 H ) S ~  > + term with S i- ~ S + (2.8) 

where C = m 2 S  2/4. The cross terms have vanished due to the fact that, 
e.g., a double S + changes any eigenfunction of S z into one with an eigen- 
value increased by two units, which is orthogonal to the original one (while 
H is diagonal in S~). The term with S 7 and S + interchanged gives, when 
integrated, a result equivalent to that of the written term; this can be seen 
by changing the integration variable from 2 to 2 ' =  f l - 2  and using the 
cyclic property of the trace. One now writes 

exp(2H) S + exp( - 2H) = exp( - 2S~ Oi) S + exp(2S~ Oi) 

= exp( - 2 0 i ) S  + (2.9) 

where O i = Z j J o S }  and where in the first step all operators in H not 
involving the site i are commuted through the S +, and in the second step 
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the commutation relation I-S/+, S z] = - $ 7  is used. Substituting into (2.8) 
and then (2.2), interchanging the integral and the trace, and performing the 
integration, we have 

Z •  1Tr{  exp(- /~H)  e x p ( - f l O i ) - l s + s T ) o i  (2.10) 

[The question of the validity of (2.10) arises here for the situation where Oi 
has the eigenvalue zero. In this case the 2 integration would give -/~ 
instead of the [ e x p ( - r  1]/Oi of (2.10). But - /~ is simply the limit of 
the latter expression as Oi--* 0 formally. Thus, (2.10) may be retained even 
in this case with the understanding that when Oi has the eigenvalue zero, 
the limit is to be taken.] Equation (2.9) is now used in reverse, with 2 
replaced by/~, to obtain (2.10) in the form (noting that Oi commutes with 
all the operators) 

)~• = - 2 C N Z  -1 Tr{(Oi) 1[S+ exp(- /~H)  S E - exp( - f l H ) S  + S~ ] } 

= 2 C N (  IS  +, S i ]/Oi> 

= 4CN(S~/Oi~ (2.11) 

where an exp(- /~H)  has canceled against an exp(/~H), and the cyclic 
invariance property of the trace, Tr AB = Tr BA, has been used. The spin-S 
Ising model Suzuki ~15) identity 

({i}S~> = ({i} Bs(t~Oi) > (2.12) 

where {i} is any function of any spins not involving Sj, is now invoked to 
obtain the perpendicular susceptibility in the form 

,~ • = N m 2 S -  Z ( Bs(flOi)/O i> (2.13) 

B s is the Brillouin function given by 

Bs(x  ) = ( S +  �89 coth[(S + �89 - �89 coth(�89 

For S = i ~, one uses Bl/2(x ) = �89 tanh �89 in (2.13) to recapture the formula 
derived by Fisher [Ref. 1, (4.2) combined with (4.9) and (4.10)]. 

2.2.  G e n e r a l i z a t i o n s  

If the Zeeman term - Z i h i S  z [-with hi=mS l(Hz)i] is added to H, 
thereby allowing the magnetic field to have a local z component, the 
derivation goes through as before, with Oi replaced by Oi+  hi: 

Z• = NmZS-2 < Bs(fl(Oi + h,))/(Oi + hi)> (2.14) 
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Nowhere in the derivation was the nearest neighbor property of the Jo used 
or the space dimensionality of the lattice, so that (2.14) holds for any range 
of coupling and any dimensionality. If the spins are distributed on a regular 
lattice which is not necessarily Bravais, so that all sites are equivalent for 
the purposes of this calculation, formula (2.14) is seen to hold with N now 
being the total number of spins in the system. If the spins are distributed on 
an irregular lattice, which can be described as a Bravais lattice with a basis, 
then with the notation r = 1, 2,..., n labeling the spins on the basis sites 
within a single Bravais cell labeled by i, (2.14) is seen to generalize to 

Z• = N m 2 S - 2  ~ (Bs(fl(O~,r + h,.r))/(Oi, r + hi.r)) 
r 

where N is the total number of Bravais lattice sites. 

(2.15) 

3. B L U M E - C A P E L  M O D E L  

For this model O6'17/ the Hamiltonian is 

Hu-c = H~sing + A(Sz) 2 (3.1) 

where A is a splitting parameter. Using the general formula 

f(S~.) S + = S+ f ( S ~  + 1) (3.2) 

for any function f, one proceeds through the stages of Section 2.1 to obtain, 
instead of (2.11), 

Z• = - 2 C N Z  I T r { ( O i - 2 A S T + A ) - ' [ S / ~  exp( - f lH)  

- exp( - f i l l)  S + ] S 7 } 

Using (3.2) again for the first term, 

Z• = - 2 C N Z  ' Wr{ [S+(Oi  - 2 A S  z -  A) -*  exp( - f i l l )  

- ( O i -  2ASy + a ) - '  e x p ( - f l H ) S ?  ] S 7 } (3.3) 

and again using the cyclic invariance property of the trace, 

5~• = - 2 C N ( ( O , -  2dSy  - A ) - I S F S  + - ( 0 ~ -  2AS~. + A) ' S + $ 7  ) 

o r  

1 { s ( s +  1 ) -  (sf) ~ + sf  
Z I = ~ N m 2 S - 2 \  ~,,.7 ~-j~ 7 j s ( s  + 1)  - ( s y )  2 - 

"O_----2-AS-~--A S~) (3.4) 
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where the well-known formulas for S + S~- and $ 7 S  + have been invoked. 
Relation (3.4) reduces to (2.11) in the limit d -+ 0. Now, to obtain (3.4) as 
a function of the Oi alone [as in (2.13)], one simply does a partial trace as 
in Suzuki, (is) i.e., 

{ f (ST))  = exp{fl[S~Oi-A(Sj.)a]} 
\ S  z= - -S  

x f(S~.)/ ~ exp{fl[S, =. O i -  A(S,'.)']}) (3.5) 

Equation (3.5) holds even when O~ appears (as a parameter) in f,  as it does 
in the present case. In practice, there is no need to attempt to reduce (3.5) 
to known simple functions. 

It is noted that (3.4) holds for general spin S; a formula is thus 
obtained for the general S Blume-Capel model, originally defined for 
spin 1. 

4. CONCLUDING REMARKS 

It is clear from the above derivations that the same method can be 
used to derive formulas for the initial perpendicular susceptibility for even 
more general models, including those with Z,_3A,(S~)  n added to the 
Hamiltonian (the An being additional splitting parameters). In the Appen- 
dix, it is shown how one may obtain our general Ising formula (2.14) from 
the spin-S results of Essam and Garelick. (19) 

APPENDIX 

Essam and Garelick (19) studied the difference between the static limit 
of the frequency-dependent transverse susceptibility and the isothermal sus- 
ceptibility, for the spin-S Ising model. Combining their equations (5.15) 
and (5.25), we have (in our notation) what would be their expression for 
the isothermal susceptibility: 

Nm 2 ( P , S  z) S+ 1 
- -  + Nrn:fl {Po) (A1) U- X -5-U 

r 
~Or :~ 0 

where the (o r are the eigenvalues of Oi, Pr is the projection operator that 
projects onto the subspace corresponding to co,, and Po is the projection 
operator corresponding to ~o, = 0. Now, since 

Bs(x) = xS(S + 1)/3 + O(x 3) (A2) 
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for small x, we have 

[Nm2fl(S+ 1)/3S](Po) = (Nm2/S2)(PoBs(flOi)/Oi) (A3) 

At the same time, the Suzuki identity (is) gives 

( PrS~/o)~ ) = ( PrBs(flO i)/O i ) (a4)  

With (A4) and (A3) in (A1), 

Z• = (Nm2/$2) • (PrBs(flOi)/Oi) (a5)  
r 

where the sum over r is now unrestricted, so that Zr Pr = 1 may be used to 
obtain (2.13). tn reality the o) r were originally defined as the eigenvalues of 
Oi+hi (for simplicity hi was set equal to zero above), so that (2.14) is 
obtained in the same way. 
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